
Lesson 29. Bug Tracking System / Part 4 311

Lesson 29. Bug Tracking System / Part 4
~ UNIT 5. Bug Tracking ~

 LessonLesson 29

Bug Tracking System / Part 4Bug Tracking System / Part 4

Lesson 29. Bug Tracking System / Part 4... 311

BTS Attributes: Resolution..312

Resolution: Reported...313

Resolution: Assigned...313

Resolution: Fix in Progress...313

Resolution: Fixed..314

Resolution: Fix is Verified..314

Resolution: Verification Failed..315

Resolution: Cannot Reproduce...315

Resolution: Duplicate...319

Resolution: Not a Bug..320

Resolution: 3rd Party Bug...321

Resolution: No Longer Applicable..322

Lesson Recap..322

Homework..323

Quiz..323

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

312 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

Trust, but verify.
- Ronald Reagan

BTS Attributes: Resolution

RESOLUTION
Resolution is a drop-down menu with the following list:

Reported
Assigned

Fix in progress
Fixed

Fix is verified
Verification failed
Cannot reproduce

Duplicate
Not a bug

3rd party bug
No longer applicable

Resolution is one of the most important BTS attributes. If Status is about global
things like "was born," "died," and "got reincarnated," Resolution provides details like
"graduated from college", "got married", "bought a condo" etc. Resolution describes the
stages of a bug's life.

Question: What drives a bug from one life stage to another?
Answer: Certain activities geared towards bug resolving.

Question: Where can we find information about those "certain activities" and the
associations between them and the concrete values for Resolution?
Answer: In the Bug Tracking Procedure.

Let's learn about each Resolution.

Because the majority of bugs are found in the software (not in the specs or
other documentation), we'll be talking about situations where the person
responsible for the bug fix is the programmer.

In our course each Resolution is illustrated by a bug filed into the bug tracking system of
Test Portal.

You can see those bugs here: Test Portal>Bug Tracking>Bug Vault. This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 313

Resolution: Reported

This Resolution must be chosen when the person who files a bug doesn't know who will
be fixing the bug. This is the situation when a tester assigns a bug to himself.

In case of sophisticated BTS software, we can program our Bug Tracking
Procedure (BTP) into the BTS workflow.

For example, depending on the situation, the required Resolution value
would automatically be selected.

For this course, we assume that the people who use the BTS voluntarily follow the
BTP.

See Bug Vault>Bug #2

Resolution: Assigned

This Resolution means that the programmer in Assigned to should investigate the bug.

Example 1: The person who files a bug knows who is going to fix it, so that person
selects name of the programmer from Assigned to and selects the Assigned for
Resolution.

See Bug Vault>Bug #3 – please note that this bug was invented to illustrate the point.
ShareLane application doesn’t have this bug.

Example 2: The person filed a bug with Reported status, but changed Reported to
Assigned (and put programmer's alias into Assigned to) once he found out who was
going to fix the bug.

See Bug Vault>Bug #4 (pay attention to Change History)

Resolution: Fix in Progress

The programmer selects this Resolution as soon as he starts working on the bug fix.

See Bug Vault>Bug #5 (pay attention to Change History)This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

314 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

Resolution: Fixed

The programmer selects this resolution as soon as he has checked the bug fix into the
CVS. Along with that, the programmer must select the same alias as in Verifier from the
drop-down menu Assigned to.

See Bug Vault>Bug #6 (pay attention to Change History)

Testers should remember that it takes time before the build script picks up
the CVS content and populates it onto a particular environment. So, if a
programmer changed the Resolution to Fixed at 8:00 am, and the next build
starts at 9:00 am and takes 15 minutes to complete, then the bug fix will be
available on the target environment no earlier than 9:15 am.

The moral of the story: before you start regressing the bug, make sure that the
build with the bug fix has already been pushed to the target environment and
that the build was successful.

In other words, check out 2 things before you begin bug fix verification:

- Build status (see example at Test Portal>Release Engineering>Build Status)

- Application version on the target environment - you can see it if you view
the HTML source of any Web page on ShareLane.com:

<!-- application version 1.0-23/34 -->

Resolution: Fix is Verified

Remember that bug regression consists of two parts:

Part 1. Verification that the bug was really fixed
Part 2. Checking if the bug fix hasn't broken some other parts of software.

First of all, we just try to reproduce the bug following the instructions in the Description:

- If the bug is NOT reproducible, then it was really fixed.

- If bug IS reproducible, then it wasn't fixed, so we send it back to the developer
with the Resolution Verification failed – and we DO NOT execute Part 2 of the
bug fix verification.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 315

If the bug is NOT reproducible, we move to Part 2. This is where it gets interesting. In the
case of more or less complex software, it's sometimes extremely hard (even for a
programmer) to confidently predict how a certain change to a certain piece of code will
affect other parts of the software. So, the only way to do comprehensive regression
testing is to perform 100% coverage of all possible scenarios (what's usually
impossible!).

The standard way to execute Part 2 is to perform a basic end-to-end test of the
feature that contained the bug. In special cases (for example, in case of Emergency
Bug Fix) you can:

a. Ask the developer who fixed the bug what could have gotten messed up
as a result of the bug fix and what he recommends that you check out in particular.

b. Next follow his instructions.
c. Then perform a basic end-to-end test of the feature that contained the

bug.

Please note that you can:

- Change the Resolution from Fixed to Fix is verified AND
- Close the bug (change its Status to Closed) as soon as Part 1 is finished and
you have verified that the bug was really fixed.

Why bother about Part 2? We need Part 2 simply as a safety measure. Of course, in the
case of Part 2 we’re not talking about serious testing - we just do a quick check that
usually takes several minutes.

See Bug Vault>Bug #7 (pay attention to Change History)

Resolution: Verification Failed

The verifier changes the Resolution to Verification failed and Assigned to to the alias of
the responsible developer if the bug is reproducible; that's if Part 1 of the bug fix
verification failed.

See Bug Vault>Bug #8 (pay attention to Change History)

Resolution: Cannot Reproduce

This unpleasant situation occurs if the developer tries to reproduce the bug assigned to
him or her, and cannot do it. The bug is usually not reproducible for 1 of 3 reasons:

1. The tester didn't provide a comprehensive Description.
2. The tester's environment and the developer's environment are different.
3. There is no bug.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

316 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

Let's look at these reasons one by one.

1. The tester didn't provide a comprehensive Description.

One of the main concepts about bugs is the idea that if a bug exists, then it is
reproducible. NEVER file a bug until you reproduce it at least once after you
discovered it. Read the following Brain Positioning, and remember it for the rest of your
testing career!

Sometimes you can get really excited once you find a bug, especially a fat
P1, and you can be tempted to run to the developer RIGHT AWAY to share
your finding. Don’t do this!

Whatever the problem is:

1. Try to reproduce it.
2. Try to narrow it down - in other words, try to isolate the problem.

For example: Let's assume that after you clicked the Make Payment button using
Google Chrome on Windows 8, you got a 500 – Internal Server Error. What you
should do next is this:

1. Try to reproduce it again, and write down the exact parameters (book
title/price/quantity/credit card info: type: number, cvv2, expiration date).

2. Play with those parameters; for example, try to reproduce the bug using a
different credit card.

3. Try to use a different browser/OS combo; for example, try Firefox under
Windows 8 or Google Chrome under Mac OS.

4. If a feature is on production and you found a bug in the test environment, try
to reproduce the bug on production.

After your 4-step investigation is done, file a bug report right away, or go talk to
developer (and file the bug RIGHT AFTER that).

Again, if a bug exists, then it's reproducible.

Each bug is a result of a certain scenario which is:

1. Actions
2. Data
3. Conditions.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 317

Usually people are more focused on providing info about actions and data rather than
about conditions. Try to avoid that pitfall! In many cases, it's the condition that makes
all the difference. In some cases, a condition can be very unusual or hard to grasp, but
if you pay attention you'll find that condition. Please read the story below to better
understand my point.

4 Scientists and 1 Flask

Once upon a time, there was a pharmaceutical laboratory where 4 scientists
worked to find cures for illnesses. Scientist Leo N. invented a unique chemical
substance that could serve as the basis of a new, powerful medicine. The problem
was that the 3 other guys could not produce the substance, even if they
methodically followed Leo’s every step. Leo was happy to share all the
information he possessed about the process, but the others had no luck - it
seemed like Leo had some unexplainable ability. One evening, those 4 scientists
with their PhDs in chemistry got together and decided that they were going to
believe in miracles, but only after one last thing: during the preparation of the
substance, Leo’s EACH AND EVERY action must be captured on video and
analyzed afterwards.

Following the plan, after the video was ready, the 4 colleagues got together and
made a thorough analysis of EACH AND EVERY one of Leo's actions. After
several hours of analysis and conducting tests they found out what was really
happening: in the middle of the preparations, whoever was preparing the
substance had to walk for 1 minute between the two laboratories, which were
situated in different buildings. It was wintertime, BTW. Leo was a smoker, so
before going outside he would put the flask under his coat to free his hands
for a cigarette and matches. Therefore, the substance in the flask wasn’t
exposed to the cold like it was with the 3 other scientists who didn't smoke and
who simply ran between the buildings with the flask in their hands! So the
magical condition that made all the difference was: Don't expose the flask to
the cold!

The moral of the story here is that, in some cases, even a little, hard-to-notice
nuance makes all the difference.

Let's get back to our testing. In many cases, a bug is not reproducible not because the
tester didn't know the scenarios/conditions, but because he just didn't write a
comprehensive Description.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

318 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

Please remember that even if you get excited about finding some buggy
area and you want to continue hunting for bugs instead of filing bugs, it's
your direct responsibility to:

- File bugs
- Make sure that others can understand your bugs and be able to

reproduce them.

It really bad when a developer must put off his coding, spend time trying to reproduce a
bug, and is not able to do it because the tester forgot to include a little detail right in the
middle of Steps to reproduce. You must avoid situations like that!

Do your best to avoid "merchandize returns" that come with the Resolution
Cannot reproduce!

2. The tester's environment and the developer's environments are different.

Again, it's all about conditions. There are situations where some kind of underlying item
is different in the dev environment (for example, billy.sharelane.com) than in the test
environment (for example, main.sharelane.com).

For example, the dev environment could have a more recent version of the Python
interpreter, so Billy could use the Python libraries that exist in his environment but are
missing on main.sharelane.com. The tester sees a bug and files it, only to get a Cannot
reproduce Resolution, which leads to a waste of time going back and forth with Billy
trying to understand what's really going on!

3. There is no bug.

Here’s a potential situation: The DB on main.sharelane.com is down for maintenance,
and the tester doesn't know about it. He sees the bug, tries to reproduce it (with
success), and then files it. The programmer tries to reproduce the bug when the DB
outage is over, but the bug doesn't exist anymore. So the programmer sends the bug
back with the Cannot reproduce Resolution.

A similar unpleasant situation might happen when the testing is done while a
push of a new build is under way.

ALWAYS check the build status page before starting testing!

In case of a Cannot reproduce Resolution, whoever selects that Resolution should also
assign the bug back to the person who filed it - it's the person from the Submitted by
field.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 319

What happens if a tester receives a bug back? He should either close it OR provide
more details and assign it back to the developer with an Assigned Resolution.

See Bug Vault>Bug #9 (pay attention to Change History)

Resolution: Duplicate

This Resolution is selected if another bug was already filed for the same issue. In
software companies, the BTS may contain thousands of open and closed bugs, and
sometimes it's not physically possible to review each of them to avoid filing a duplicate.
The best way to avoid duplicates is to

- Do comprehensive search in BTS (BEFORE filing a bug) and
- Keep close look at all new bugs filed for the functional area or component you
are responsible for. Example of the functional area is Checkout.

A professional BTS usually allows you to modify the settings for your BTS
account and sends you an email if any new bug is filed or a filed bug meets
certain criteria, for example, when value of BTS attribute Component
equals Checkout.

That way you'll know what was already filed.

On the other hand, there can be not-so-obvious situations. For example, two or more
filed bugs can be the result of the same root cause.

Let's look at Bug #4 in the Bug Vault: "shopping_cart.py: 2% discount if
user buys 12-19 books inclusively".

The WRONG way to do it is to file 8 bugs:

1. "shopping_cart.py: 2% discount if user buys 12 books".
2. "shopping_cart.py: 2% discount if user buys 13 books".
3. "shopping_cart.py: 2% discount if user buys 14 books".
…
8. "shopping_cart.py: 2% discount if user buys 19 books ".

The root cause is the following statement in shopping_cart.py:

if q >= 12 and q <= 49:
discount = 2

So, one bug is enough to cover all 8 cases.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

320 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

Black box testers don't look into the code, and situations like this do take place. So
when the developer returns your bug with a Duplicate Resolution, explaining (in
Comments) that your bug was caused by the same code as another bug, don't take it
personally – that happens, and it's okay.

Once a bug is marked as Duplicate, the person making that change must also put the
original (previously found) bug ID in Comments and assign the bug back to the person
who submitted it.

See Bug Vault>Bug #10 (pay attention to Change History)

Resolution: Not a Bug

Startups, especially in the early stages, are usually a mess.

In some cases, it's really hard to find out the correct expected result, and our old
friends: common sense and life experience might be different from what the PM tried to
communicate during his talk with the developer some time ago.

In some cases the PM communicates a product change to the developer and
forgets to:

- update the spec and
- mention that product change to the tester.

In some cases, the tester is correct that it's a bug, but the developer thinks that it's
a feature and sends the bug back to the tester.

So be prepared to answer the question: "Why is that a bug?" If you were wrong about
it, but you had reasons for believing that it WAS a bug, then there is no problem.

If you are not sure and it's a good time to ask ("Hey Linda, is this a bug or not?"), then
ask. If nobody is available, then file a bug report. It's better to file a bug (if you have
reason to believe that it is a bug) and later find out that it's not a bug, than be scared of
the Not a bug Resolution and ignore the real problem.

In any case, when you receive your bug back with the Not a bug Resolution, read the
Comments section and try to understand what the developer tried to communicate. If
you still think that you are right, go talk to the developer, and then:

- If you both agree that it is a bug, send it back to the developer (Assigned to:
developer's alias; Resolution: Assigned) with your explanations in Comments.

- If you both agree that it's not a bug, just close it.
This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 321

Sometimes when a spec is poorly written, the tester and developer cannot come to a
consensus about what the PM meant in the first place. In that case, reassign the bug to
the PM and let him decide whether it's a bug or not. In a situation like this, we also
recommend filing a separate bug against the spec.

See an example of ping-pong with "Not a bug" here:

See Bug Vault>Bug #11 (pay attention to Change History)

Resolution: 3rd Party Bug

The code in the software company cannot rely exclusively on in-house software – which
is а software code written by company programmers. We use databases, compilers,
interpreters, and Web servers that have been designed and developed by others.

In many cases, we also integrate our software with the software of our partners, for
example, with credit card processors. So, here is the situation: you file a bug, the bug
programmer returns this bug to you with a 3rd party bug Resolution and the comment
that the bug is not in the software that he wrote, but instead in the software written by
others. Here we might encounter two situations:

1. We CANNOT influence "others" to fix their software – for example, if the bug is in
the Python interpreter, we cannot call Python’s father, Guido van Rossum and ask him to
fix the bug before our release goes out. So, the only way to fix the bug is to find some
programming workaround. So, if a programmer returns your bug with a 3rd party bug
Resolution, it doesn't solve the problem, because whether he likes it or not, help is not
coming, and we have to find a solution ourselves. In a case like this, talk to the
programmer and re-assign the bug back to him.

See Bug Vault>Bug #12 (pay attention to Change History) - please note that this bug
was invented to illustrate the point. ShareLane application doesn’t have this bug.

2. We CAN influence "others" to fix their software.

For example, in checkout.py we have the function get_ccp_result() (you can see
source code here: Test Portal>Application>Source code>checkout.py).

This function connects to the payment processor to process credit card payments (of
course, in case of ShareLane there is no real processor – it's all training software). That
payment processor software belongs to another company, which is our service provider
(also called vendor). If there is a bug in the vendor software, then we can call them and
ask them to fix the problem ASAP. As a rule, the tester usually doesn’t make this contact.
As a rule, a contact like this is the responsibility of the project manager (PjM). BTW, in
startups PMs are often also PjMs.

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

322 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

So, if a developer returns a bug to you with a 3rd party bug Resolution in this case, you
should reassign the bug to the PM and that person would be the bug owner that is
responsible for resolving the situation.

See Bug Vault>Bug #13 (pay attention to Change History)

Resolution: No Longer Applicable

This is usually selected for bugs found in features that have been deprecated.

Deprecated feature is a feature that is still available to users but no longer
officially supported.

See Bug Vault>Bug #14 (pay attention to Change History)

Lesson Recap

Bug Resolutions include:

1. Reported: A bug was filed, but the developer to fix it has not been assigned.

2. Assigned: Assigned developer must start bug investigation.

3. Fix in progress: The developer is fixing the bug.

4. Fixed: The bug was fixed, but the bug fix hasn't been verified yet.

5. Fix is verified: The bug fix has been verified.

6. Verification failed: The bug fix verification failed - in other words, bug is reproducible
after the bug fix.

7. Cannot reproduce: The developer cannot reproduce the bug.

8. Duplicate: The bug is a duplicate of another bug.

9. Not a bug: The bug is not considered to represent a problem (which is a deviation of
actual from expected).

10. 3rd party bug: The bug is in 3rd party software.

11. No longer applicable: The bug doesn't have any meaning anymore.
This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 323

Homework

Match bug Summaries to bug Resolutions:

Bug Summaries:

1. "add_to_cart.py: cannot add book using Internet Explorer v.3.0" (IE 3.0 was
released in 1996)
2. "add_to_cart.py: bug in Python 2.7 interpreter"
3. "add_to_cart.py: only 1 book can be added to Shopping Cart"
4. "add_to_cart.py: bad logic"

Bug Resolutions:

1. Reported
2. Cannot reproduce
3. 3rd party bug
4. No longer applicable

Quiz

Question 1: Reported means that it's not clear yet who is going to fix that bug.

□ True

□ False

--

Question 2: Assigned means that the person should fix the bug or find a person who
will fix the bug.

□ True

□ False

--

Question 3: Fix in Progress means that programmer could reproduce the bug.

□ True

□ False

--

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

324 How to Become a QA Tester in 30 Days UNIT 5. Bug Tracking

Question 4: Fixed means that the bug fix is in version control system and will be
available in the next build.

□ True

□ False

--

Question 5: Bug fix verification assumes a two part process.

□ True

□ False

--

Question 6: Verification Failed means that the bug is reproducible.

□ True

□ False

--

Question 7: Cannot Reproduce means that there is no bug.

□ True

□ False

--

Question 8: Not a Bug means that there is no bug.

□ True

□ False

--

Question 9: 3rd party bugs are not fixable.

□ True

□ False

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

Lesson 29. Bug Tracking System / Part 4 325

--

Question 10: No Longer Applicable is often applied to deprecated features.

□ True

□ False

This is promotional excerpt
from QA Mentor Course
"How to Become a QA Tester in 30 Days"
Do not distribute.
For private use only.

